WS7: Next Generation Routing and Management Infrastructures in 6G – NET-GENES22 Workshop

Submission Link:

The core principle of IP addressing and routing in the Internet has remained stable for 50 years. However, the Internet is under significant strain during its evolution due to its scale and the increasingly demanding services it is called to support. Although ad-hoc solutions over the years have allowed IP networks to cope with emerging requirements in an incremental fashion, further improvements are tough to achieve.

Meanwhile, the addressing and routing innovations are active inside Limited Domains (LD – a technical domain with consistent utilization of routing and other policies as enforced by the entity that manages the domain), which are domain-specific. The innovative technologies lead to extra business values with new capabilities, increased flexibilities, efficient utilization of infrastructure resources and better quality of service. Examples of LDs are factory networks, IoT networks, edge networks, CDN networks, satellite networks, extreme requirements use cases domain, etc.

Both inside and across limited domains, addressing and routing have faced many challenges. The support for highly dynamic topologies is one of them, which emanates from satellite and vehicular network deployments. The mobility of network nodes can cause stability problems to existing routing protocols. Supporting alternative addressing semantics beyond network locations is another area of investigation for future routing solutions.

Moreover, scenarios involving programmable paths, multi-path, multihoming, security, etc., bring new challenges and opportunities to existing routing protocols and solutions. Additional challenges are related to the emerging 6G requirements of unified integration of network segments and limited domains as a compute continuum, which support seamless execution of services across multiple domains capable of a unified service provision beyond best effort across heterogeneous communication and computing environments.

Network and service management is about administering networks and services with direct support for all their operations. It aims to integrate fault, configuration, accounting, performance, and security management in the networking systems and leverage the self-management, automation and autonomic capabilities enabling unprecedented abstraction, disaggregation, operation, integration, and programmability in network infrastructures and services. It creates a level of decoupling between the infrastructure delivering the service and the service elements.

Although the two areas were developed relatively independently in the past 50 years, there is an urgent and critical requirement to break the boundaries and increase direct interactions between different IP infrastructure, management systems, and application domains capable of a unified service provision beyond best effort across heterogeneous communication and computing environments. Such development would significantly enhance and profoundly change how communication infrastructures are designed and operated, enabling rapid and innovative service creation.

New solutions for inter-computing management systems with routing beyond the Internet’s inter-networking capabilities would make seamless services execution across multiple and inter-working domains possible, each possibly applying different policies and mechanisms for routing, security, access to resources and application services.

In addition, the solution space in the addressing, routing and management domains has been evolving in a fragmented way. Too many ad-hoc solutions can lead to unnecessary complexity, increased fragility and even security/privacy leakage. A more holistic approach needs to be taken to design architectural recommendations to meet economic and technical objectives to avoid these potential risks. Expected benefits include service performance guarantees, better support for dynamic topologies and mobile users, improved security and privacy, extended data plane programmability and routing scalability, and reengineering level 3 & 4 protocols to meet 6G emerging requirements.


Based on the successful SARNET21 workshop at IEEE HPSR 2021 conference, the following research works, technical achievements, innovations, and visionary papers on the following topics, but not limited to, are welcome for submission to the NET-GENES22 workshop.

  • Internet-like architecture supporting much higher dynamics and versatility for its topology while significantly lowering energy consumption
  • Reference architectures and frameworks for routing
  • Network abstractions and open APIs for Routing and Management
  • New solutions for integration of addressing, routing, and management systems in 6G
  • Innovations in routing technologies and addressing in future networks
  • IP addressing with multi-semantics (e.g., location, name, topology, etc.) enhancement
  • Network interoperability in the presence of alternative addressing
  • Pluginized routing protocols
  • Multiple Routing in network slices
  • Distributed routing aggregation
  • Service routing
  • Network slice-based routing
  • Topology based routing
  • Routing security and privacy
  • Resource management mechanisms for deterministic data transmission
  • Energy harvesting, storage, and utilization for routing and management optimization
  • Frictionless inter-domain resource management
  • Deterministic Networking and Routing
  • Protocols and methods for delivery of high precision services with KPIs guarantees
  • Methods and frameworks enabling customized functions on data packets and processes to program the header of the packets
  • High-performance in-network processing and management for routing and forwarding
  • Limited domains and their interconnection
  • Ad-hoc multicast creation and management
  • High performance, programmable networks for the Edge and Internet of things
  • End-to-end network programming
  • APIs, multi-limited domain frictionless orchestration; interoperability multi-domain domain methods and algorithms for extreme performance networking, such as very low latency, ultra-high peak data rate, time-sensitive networking, and deterministic networking
  • Methods for efficient support for the new emerging application domains: Internet of senses, holographic communications, massive digital twinning, and XR, fully autonomous driving, flying networks
  • In-network service level optimization; predictable KPIs and QoS
  • Management of complexity introduced for realizing the additional addressing, routing, and management semantics

Alex Galis, University College London (UCL), United Kingdom (Great Britain),
Zhe Lou, Huawei Technologies European Research Center, Germany,